Perform Common Process
Loop Control Algorithms

Using the PIDE Instruction

Introduction

This white paper discusses how to use the features inherent in the Enhanced PIDE instruction in the
RSLogix 5000 Function Block Diagram (FBD) editor to perform common process loop control
algorithms such as:

. adaptive gains

. cascade control

. ratio control

. multiloop selection

. split-range time-proportioning

Although this paper focuses on the PIDE instruction, be aware that the FBD editor supports many
other process control instructions. Other instructions provide capabilities such as flow totalization,
ramp/soak temperature profiles, motor operated valve control, and two- or three-state device control
for devices such as pumps and solenoid valves. These instructions provide you with the building
blocks you need to perform typical process control applications.
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Velocity vs. Positional Control

The PIDE instruction uses a velocity form algorithm of the PID equation. Essentially, this means that
the loop works on change in error to change the output. Traditional PID algorithms used in PLCs have
used positional form algorithms. A positional form algorithm works on error directly. Although this is
acceptable for simple applications, the velocity form algorithm is much easier to apply for more
advanced applications such as adaptive gains or multiloop selection. For this reason, most
Distributed Control Systems (DCS) have traditionally used a velocity form algorithm. Likewise, the
Logix controller family also takes advantage of the more advanced properties of a velocity form
algorithm.

Understand that both a positional form and a velocity form PID algorithm perform identically in
response to a change in error. In fact, you can easily derive one form of the equation from the other.
The equations for the two types of algorithms are shown below:

Positional Form PID Algorithm

Ccv :KPE+ZK,EAt+KD%

Velocity Form PID Algorithm

CV =CV. ,+K,AE + K, EAt+K, o _ZEA"? B
where:

CV = Controlled Variable

E = Error

At = Update time
Kp = Proportional gain
Ki = Integral gain

Kb = Derivative gain

The two main differences between the forms of the PID algorithm are that:

e the proportional term works on change in error (AE) in the velocity form and on error (E) in
the positional form

e the accumulation of the integral term is contained in the previous output (CVn-1) in the velocity
form and in the summation of the integral term in the positional form. The following sections
explain why this is important.

The PIDE instruction also supports two different forms of the velocity form algorithm — independent
and dependent gains. These are described below:
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Independent Gains Form

In this form of the algorithm, each term of the algorithm, proportional, integral, and derivative, has a
separate gain. Changing one gain affects only that term and not any of the others.

E,-2E ,+E, ,
At

K
CV, =CV,_, +K,AE +6_(I) EAt + 60K

where:

CV = Control variable

E = Error in percent of span

At = Update time in seconds used by the loop

Ke = Proportional gain

Ki = Integral gain in min"'. Note that a larger value of Ki causes a faster integral response.

Kb = Derivative gain in minutes

Dependent Gains Form

In this form of the algorithm, the Proportional gain is effectively changed into a Controller gain. By
changing the Controller gain, you change the action of all three terms, proportional, integral, and
derivative, at the same time.

OV, —CV. , + K| AE + L Ent+ 607, En = 2Ena T Ens
60T, At

where:

CV = Control variable

E = Error in percent of span

At = Update time in seconds used by the loop
Kc = Controller gain

Ti = Integral time constant in minutes per repeat. In other words, it will take T\ minutes for the integral
term to repeat the action of the proportional term in response to a step change in error. Note that a
larger value of T| causes a slower integral response.

To = Derivative time constant in minutes

When you use the PIDE instruction with the parameter Dependindepend cleared, the parameters
PGain, IGain, and DGain are used to represent Kp, Ki, and Ko. When Dependindepend is set, you
use the parameters PGain, 1Gain, and DGain to represent Kc, Ti, and Tp.
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The PIDE equations above are representative of the algorithms used by the PIDE instruction. You
can substitute the change in error values by the change in PV (in percent of span) for the proportional
and derivative terms by manipulating the parameters PVEProportional and PVEDerivative. By default,
the PIDE instruction actually uses the change in error for the proportional term and the change in PV
for the derivative term. This eliminates large derivative spikes on changes in setpoint.

You can convert the gains used between the independent and dependent gains PIDE algorithm forms
by using the following equations:

° KP = Kc

kK
TI

° KD:KCTD

Either algorithm type — independent or dependent — can give you identical control with the appropriate
gains. It really just depends on with which style of PID algorithm you have the most familiarity. Some
people prefer the independent gains style since they can manipulate individual gains without affecting
the other terms. Others prefer the dependent gains style since they can, at least to a certain extent,
change only the controller gain and cause an overall change in the aggressiveness of the PID loop
without changing each gain separately.

Adaptive Gains

One of the big advantages of a velocity form algorithm is the implementation of adaptive gains.
Implementing adaptive gains simply means that you change the proportional, integral, and derivative
gain values in a running loop. This is often desirable since a process may have very different
operating characteristics depending on the actual operating environment. For example, the barrel
temperature control of an extrusion machine often involves heating the barrel with resistive heaters
and cooling the barrel by running coolant through lines around the barrel. The heating and cooling of
the barrel are two different physical processes and often require different gain values in order to
obtain the best control. Typically this is accomplished by defining 50% loop output as providing no
heating or cooling. An output greater than 50% applies increasing heating, and an output less than 50
% applies increasing cooling.

With a positional form algorithm, swapping in new gains as the loop changes from heating to cooling
is very difficult. Since the proportional term on a positional form algorithm works directly on error, any
error at the point at which the gains change causes a bump in output proportional to the difference
between the heating and cooling proportional gains. For example, assume that the heating
proportional gain is 3 and the cooling proportional gain is 1. Now, if the loop output moves from
cooling to heating (i.e., crosses 50%), and, when it does so, the error is at 5%, the loop experiences a
10% bump in output when you switch it to the heating gains. This is because the positional form PID
algorithm works on error directly. It is very difficult to get good control when the output is bumped just
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because of new gains. To handle this correctly, you really need to put the loop in manual, put in the
new gains, execute the loop in manual once to allow it to back-calculate for a bumpless transfer, and
then finally put the loop back into automatic to start using the new gains. This is difficult and time-
consuming to program correctly.

Now do the same thing with a velocity form algorithm. Changing the proportional gain from 1 to 3 with
a 5% error causes no change in the output since the error was 5% just before the new gain was used
and remained 5% just after the new gain was used. Since the error didn’t change, no proportional
term change is made to the output. You now see why implementing adaptive gains control schemes
is much easier with the velocity form PIDE algorithm used in Logix. You can simply swap in new gain
values on-the-fly without worrying about bumping your process.

Heat Assume

1 Ko=3
[/ ® Assume that when we

switch from cool to
Cool Assume heat the error is 5%.
Kp=1 -
= AR ® Positional algorithm
CV =K E#ZK EAt+ K, — ) .
" ' ° At has an immediate

10% bump in output.

_—*® Velocity algorithm

CV. =CV. ,+ K, AE¥REA+K, o2 2Es*Eaz - has no bump in
At output.

Multiloop Selection

There are times when two or more process variables are controlled by the same control variable.
Often, the actual control variable sent to the field actuator needs to be limited in these cases to use
either the lesser or greater of the outputs of two or more PID loops (one for each different process
variable). For example, to control both the temperature and pressure in an exothermic chemical
reaction, you might have a PID loop for temperature, another PID loop for pressure, and use the
lesser of the outputs of these two loops to control a flow of catalyst into the reactor to modulate the
reaction rate. In other words, if the pressure is too high, the pressure PID loop calls for less catalyst,
and if instead the temperature is too high, the temperature loop calls for less catalyst. In either case,
you always want to use the lesser of the two loops to control the catalyst flow. The challenge is to




6 | Perform Common Process Loop Control Algorithms

align the loop which is not in control with the loop that is, and to allow control to bumplessly switch
between the loops.

Catalyst @

= O

~_—

A positional form PID algorithm is very difficult to implement correctly for this type of control scheme.
Since you constantly need to align the loops, you must take the output of the loop which is in control,
provide it as a manual output signal to the other loop, put that loop in manual to back calculate and
align with the loop which is in control, and then put the out-of-control loop back into auto. You must do
this for every execution of the loops.

A velocity form PID algorithm provides a clear advantage for these types of control schemes. Since
the previous output of the loop is available in the CVn-1 term, it is a simple matter of wiring the output
actually sent to the final control element into the CVn-1 term of each loop. The two loops will therefore
always be aligned with each other and control can bumplessly move between temperature or
pressure limited control. An example of this logic is shown below:
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As shown, the value actually sent to the catalyst valve is simply wired back into the CVPrevious
parameter on each PIDE instruction. You should also set the CVSetPrevious parameter to tell the
PIDE instruction to use the CVPrevious parameter as the CVn.1 term in the PID algorithm. This logic is
much simpler to create and maintain than the equivalent logic required for a positional form PID
algorithm.

Mode Control Options

The PIDE instruction provides additional capabilities through the use of many different modes of
control. In addition to the traditional modes such as auto and manual, the PIDE instruction also
supports the concept of Program/Operator control to define who is allowed to make changes to the
loop. If the loop is in Program control, the user program can place the loop into the appropriate mode
(e.g., Auto/Manual), and change the setpoint or manual output of the loop. Conversely, if the loop is in
Operator control, the operator can change modes and values. The supported control types and loop
modes are:

Mode Usage

Program Control When in Program control, the loop mode is determined by the user program.
The user program can also change the setpoint and manual output of the loop.

Operator Control When in Operator control, the loop mode is determined by the operator. The
operator can also change the setpoint and manual output of the loop.
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Cascade/Ratio Mode

When in Cascade/Ratio mode, the loop will automatically regulate its output as
in Auto mode, but the setpoint will come from an external source, as connected
to the SPCascade input parameter. If the UseRatio parameter is set, the
SPCascade input will also be multiplied by a ratio value before it is used as the
setpoint.

Auto Mode

When in Auto mode, the loop will automatically regulate its output to maintain
the PV at the setpoint.

Manual Mode

When in Manual mode, the loop will set its output equal to the CV value entered
by the user program (when in Program control) or by the operator (when in
Operator control)

Override Mode

When in Override mode, the loop will set its output equal to the CV value
configured in the CVOverride parameter. Override mode is typically used for
interlock conditions.

Hand Mode

When in Hand mode, the CV value is set equal to the HandFB parameter. The
HandFB is intended to come from a hard hand/auto station. When the loop is
placed into Hand mode (by setting the ProgHandReq parameter), it indicates
that the hand/auto station has bypassed the control system and is controlling
the final control element directly. By setting the CV equal to the HandFB value
(the output of the hand/auto station), the loop can bumplessly return to Auto or
Manual mode once out of Hand mode.

Mode changes are initiated by setting the appropriate mode request parameters of the PIDE
instruction. These mode request parameters are prefixed by either “Prog” to indicate it is a
programmatic request or by “Oper” to indicate it is an operator generated request. For example,
OperAutoReq is a request from the operator to enter Auto mode.

The Program/Operator control states can be used to lock the PIDE instruction into the appropriate
control state when needed. For example, an automated startup sequence might be used in an
application where the user program needs to lock the PIDE instruction into Program control to ensure
that the operator does not interfere with the startup. This can be done by setting the ProgProgReq
parameter (programmatic request to go to the Program control state).
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The control states and modes also have precedences. If both Program and Operator control are
requested, the loop will go to Operator control. The precedence for modes are (lowest to highest):
Cascade/Ratio, Auto, Manual, Override, and Hand.

Finally, the Operator requests are designed to simplify working with operator interfaces. Any time an
“Oper...” request is set, the PIDE instruction evaluates whether it can respond to the request, and
then always resets the request. This eliminates the need for special programming in the HMI to reset

mode requests.

Timing Modes

Regulatory control instructions require a known update time (the At in the PIDE equation, for
example) in order to execute correctly. In Logix, instructions such as Enhanced PID, Totalizer, and
Lead-Lag support three different timing modes to obtain this update time: Periodic, Oversample, and
Real Time Sampling. These modes are described below:

Mode

Description

Periodic

The default timing mode. To use this mode, simply place the instruction in a routine running in a
periodic task. The instruction will automatically use the periodic task update rate as the update
time. This mode is the easiest to implement and can be used for most applications.

Oversample

This timing mode provides complete manual control over how the instruction executes. To use
this mode, configure the update rate in OversampleDT. You must then set Enableln every
OversampleDT seconds.
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Real Time This timing mode works with analog input modules to execute the instruction algorithm whenever
Sampling a new analog input sample is received. To use this mode, wire the RollingTimeStamp parameter
from the analog input module into the RTSTimeStamp parameter on the instruction, and wire the
RealTimeSample parameter from the analog input module into the RTSTime parameter on the
instruction. This mode is useful if you want the most accurate execution on instructions such as
Totalizer where small errors could accumulate over time.

An example of using Periodic mode is shown in the figure below. Periodic mode can be used for the
vast majority of your loops. Just make sure that the PV is sampled faster than the periodic task
update rate.

Periodic mode is intended to be Since the timing mode is Periodic
used by placing the block into a (TimingMode=0), DeltaT is automatically
periodic task. set to the task update time of 0.1 seconds.
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For an example of where you might use Oversampling mode, consider an eddy current furnace where
every 28 seconds, a new steel ingot is dropped on a conveyor and pushed forward into the furnace.
An infrared camera takes a temperature reading on the ingot which is pushed out the end of the
furnace. The infrared camera provides the PV (temperature) for this loop through a serial interface to
the controller. In this case, a new PV is obtained about every 28 seconds, but due to the
asynchronous nature of the serial port communications, there is no good way to synchronize this with
a periodic task. You could use Oversampling mode to drive execution of the PIDE instruction every
time a new temperature signal was received as shown below.
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For an example of using Real Time Sampling mode, consider the case of a flow totalizer. In this case,
a volumetric flow signal is totaled over time using a Totalizer instruction. Because the Totalizer
continually adds the most recent flow sample to the running total, any small inaccuracies can build up
over time. To obtain the most accurate time based samples from the analog input module, you could
use Real Time Sampling mode as shown below. (Note that the Totalizer instruction internally uses
double precision floating point and trapezoidal rule numerical integration to minimize any calculation
errors.)
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PV and CV Fault Handling

When a process variable or control variable has bad health, you don’t want the PID loop continuing to
try to control since it no longer has either a feedback or an actual control capability. The PIDE
instruction can handle this automatically if you use 1756 1/0 modules. The 1756 1/0O modules all have
channel fault indications for each channel. The channel fault will turn on if communications are lost
with the 1/0O module or if faults such as underrange or overrange occur on the channel. The channel
fault, therefore, is an easy single parameter to monitor the quality of the I/O channel. By wiring these
channel fault indicators into the PVFault and CVFault parameters, the PIDE instruction will
automatically lock itself into Manual mode any time the PV or CV has bad health.

Local:1:C.RealTimeSample

Local:A:L.RollingTi

RTSTime
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]
]
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Ratio Control

Ratio control is useful when you are trying to maintain a constant ratio of flow of one material in
relationship to another. For example, assume that a continuous mixing tank receives an ingredient
flow (Flow A) from an upstream source. The quantity of Flow A may vary depending on upstream
processing conditions. For this reason, Flow A is often referred to as the “wild” or “uncontrolled” flow.
Regardless of the amount of Flow A into the mixer, you always want to add a constant percentage, or
ratio, of another ingredient (Flow B). Flow B is controlled by a PIDE instruction using Cascade/Ratio
mode, where the setpoint to the PIDE instruction is determined by multiplying the Flow A signal by a
ratio value.

To enable Cascade/Ratio mode, you must first set parameter AllowCasRat. This parameter is
available since most loops do not need Cascade/Ratio mode, so it is disabled by default. You must
also set the UseRatio parameter. This tells the PIDE instruction to multiply the SPCascade input by
the Ratio value and use the result as the setpoint when in Cascade/Ratio mode. You then wire the
controlled flow into the PV input and the uncontrolled flow into the SPCascade input. You can also
define ratio high and low limit values to limit the ratio to valid values. An example of this
implementation is shown below.
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Cascade Control

Cascade control is useful when you want to limit fluctuations in your final control element from
causing upsets to your process. As an example, consider the case of a mixing tank whose
temperature is controlled by the flow of steam into a heating jacket around the tank. If the steam
pressure were to drop as the result of some upstream activity, the temperature of the product in the
tank would start to decrease. The PID loop controlling the temperature would sense the temperature
drop and eventually open the steam valve enough to bring the temperature back to setpoint.
However, it would be advantageous to start opening up the steam valve before the product
temperature was seriously affected. Cascade control provides this capability.

In cascade control, the loop controlling the main variable is referred to as the primary loop. This is
also sometimes referred to as the master loop or outer loop. In our example, the tank temperature is
controlled by the primary loop. The loop controlling fluctuations in the final control element is referred
to as the secondary loop. The terms ‘slave loop’ or ‘inner loop’ are also used. In our example, you
could set up a secondary loop to monitor the jacket temperature. Since the volume of the jacket is
much smaller than the volume of the tank, it will respond much more quickly to changes in steam
pressure. This illustrates one of the limitations of cascade control. The process response
characteristics of the secondary loop must be quicker than the process response characteristics of
the primary loop. This is logical since if the secondary loop was slower, it would not be able to control
disturbances before they were seen by the primary.

With a secondary loop monitoring the jacket temperature, a drop in steam pressure will now be
quickly seen as a drop in the jacket temperature, and the secondary loop will start opening the steam
valve before the tank temperature is seriously affected. This is illustrated in the diagram below.
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The PIDE instruction has built-in capabilities to handle cascaded loops. First, it has a distinct mode
(Cascade/Ratio) to handle cascade control. The secondary loop can either be in Cascade mode, in
which case the output of the primary will provide the setpoint of the secondary, or it can be in Auto
mode, in which case you can enter a temperature setpoint for the jacket directly.

The PIDE instruction also supports initialization of the primary loop to the secondary loop’s setpoint. If
the secondary loop leaves Cascade mode, the primary loop needs to stop trying to control since it no
longer is affecting the process. It should also set its output equal to the secondary loop’s setpoint, so
when the secondary is returned to Cascade mode, the primary will bumplessly start controlling.

Additionally, the PIDE instruction supports windup limiting on the primary loop. When the secondary
loop reaches an output or setpoint limit, you want the primary loop to stop integrating in the direction
of the limit. For example, if the secondary reached a high output limit, the primary should no longer
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integrate in a positive direction. In our example, if the secondary loop had opened the steam valve
100%, it would make no sense for the primary to continue to ask for more steam (increase the
secondary’s setpoint) since the secondary cannot give any more steam.

A typical setup of a cascaded loop in RSLogix 5000 is illustrated below. First on the primary loop, you
need to turn on visibility of the CVInitReq and CVInitValue pins. These will be used to setup the
initialization of the primary loop when the secondary leaves Cascade mode. You should also make
sure that the engineering units range of the primary’s output matches the engineering units range of
the secondary’s setpoint since the secondary will use the primary’s output as its setpoint.

Make sure CVEUMax and CVEUMin
Turn on visibility of CVInitReq match the engineering unit range of the
and CVInitValue pins. secondary loop’s SP.

PIDE Properties - Primaryl.oop

General Configuration EUSf’LimitS]EascadefFiatio] alams [\Parameters| Tag

PIDE Prao perties - Primaryloop

Engineering Units Scaling
Gereral onfiguration] EUs.-"Limits] Eascade.-"F!atio] Alar Fv: b
Max at 100% span: 100.0 Max at 100% output: 100.0

V| Mame |Value | Tup _ ) ) ; 5 .
¥ CWnitFieq 0 BOL Min at 0% span: 00 Min at 0% output 0o

|
1|7 Cvinitvalue 0.0 FE:
1 IPVPran nniRE: SO it [RVARUS
———————————— T e
Np PIDE |
| FIDE Enhanced PID I:l
o _}_C Enhanced PID N .y - j%b_ o Seamvae |
P CWEU D—————————————— ] SPCazcade 5P o
| gspeascads ap 320 InitPrim ary 3-21
Ly CVinitReq FrogOper [0 Wi ndup HOut [
—] CVInitalue CasRat 32 i ndup Lot 32:—|
] WindupHin Auto [0 FrogQOper @ |
|-|—!a€\.l1|1ndupLIn tdanual IID CasRat :IE| |
| AutotuneTag Frimary Tune Auto 30| |
| Manual [0
| I AutotuneTag SecondaryTune I |

On the secondary loop, you need to turn on visibility of the InitPrimary, WindupHOut, and
WindupLOut pins. These will be used to setup initialization and windup limiting on the primary. You
also need to set AllowCasRat to enable the Cascade/Ratio mode just as we did for a ratio control
loop.
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Set AllowCasRat true to

Turn on visibility of
enable Cascade/Ratio mode.

InitPrimary,
WindupHOut, and
WindupLOut pins.

PIDE Properties - Secondaryl.oop

Geeral Eonfiguration] EUs/Limits Cascade/Ratio | A

PIDE Properties - Secondaryl oop

General Configuration | EUs/Limits| Cascade/Ratio| Alar I Allow Cascade/Ratio mods

i |Name |Value |T_|,J|:I [ UseRatio
O Inl_tF'rlmary 0 BOC R atio HLimit 10
0| ‘windupHOut 0 BoC
0| v WindupLOut 0 BO ollmi |10
Nl — [Ratin nnieFe it Ll i
= andanion /
| acketTemp ’/P
PrimansLoop FIDE |
| FIDE Enhanced FID |:I
o
| Enhanced FID Py CWEU .
0.0 oo 0,
Froduct Temp ] P CWEl ———— 1 SPCascade 5P O—
oo o
| ] SFCascade SF O InitPrim ary [+ I
o o
L] CVInitReq FrogOper [0 Mindup HOWt [0 |
o o
—#C] CVInitvalue CaszRat 30 Windup LOut 30_‘
) WindupHin Auta IID FrogQper IID| |
-I—HE indupllin Manual O CaszRat @& | |
o
| | AutotuneTag Frimans Tune Aute [0 | |
o
| Manual [ |
| | AutotuneTag Second anyTune | |

Finally, you should wire the InitPrimary and SP outputs of the secondary to the CVInitReq and
CViInitValue inputs on the primary. When the secondary leaves Cascade mode, it will set the
InitPrimary output, causing the primary loop to initialize its CVEU output to be equal to the
secondary’s setpoint. You should also wire the WindupHOut and WindupLOut outputs of the
secondary to the WindupHIn and WindupLIn inputs on the primary. When the secondary hits an
output or setpoint limit, it will set the appropriate Windup output which will cause the primary loop to

stop integrating in that direction.
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Wire SP to CVInitValue to initialize the primary’s CVEU to the
secondary’s SP value whenever CVInitReq is true. This allows
the primary to bumplessly line up with the secondary.

J whenever the
secondary leaves
CasRat mode.

| oo SecondaryLoop |
FrimaryLoop P = FIDE |
| FIDE Enhanced PIL L
o | Enhanced PID o P - :%E o Swamvane |
—l—c Py CWEUR—— o SPCascade P 30'_
| ] SPCascade SF 30'0 InitPrim any 7
L] CVInitReq ProgOper 32 Mindup HOwt j—E|
%] CVinitvalue CasRat 30 Wiindup LOut 30—|
=] WindupHin Auto IlD FrogQper 30| |
—|—n€ i ndupLin Wanual [ CasRat [0 | . : .
| | AutotuneTag  Primany Tune Auta 30| | ere _InltPrImary tO
| ) | CVInitReq to
| | AutotuneTag Second anTune | initialize the rima
|| |

Wire WindupHOut and WindupLOut to
WindupHIn and WindupLlIn. This stops the
primary from integrating up or down if the
secondary hits an output or setpoint limit.

One final note -- some DCS systems accomplish the primary initialization and windup limiting by
wiring a single “back-calculate” wire from the secondary to the primary. This wire contains all of the
initialization and windup H/L signals. However, the advantage of breaking these out as separate
signals is that it allows additional flexibility for handling more advanced situations where, for example,
a single primary loop might fan out to multiple secondaries.

Split-range Time-Proportioned Loops

In certain situations, a single PIDE instruction might be used to perform two types of control
depending on the output range. If we return to the example of an extrusion machine barrel zone, the
temperature is controlled by pulsing resistive heaters when the PIDE output is above 50% and
pulsing coolant through cooling coils when the PIDE output is below 50%. The Logix controllers
support a Split-Range Time-Proportioning (SRTP) instruction for precisely these types of loops.

You also need to consider how you execute the PIDE and SRTP instructions. These types of
temperature loops are usually very slow acting, so the PIDE instruction often needs to execute only
every one-half to two seconds. It is important, however, that the SRTP instruction is executed much
more quickly than the PIDE instruction. Since the SRTP is actually performing the pulsing of the
heating and cooling outputs, your output resolution is a function of the CycleTime of the SRTP and
how often the SRTP executes.
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For example, if you defined a CycleTime for the SRTP of 10 seconds, and then executed the SRTP in
the same periodic task as the PIDE at once a second, your output resolution would actually only be
10%! It would be impossible to control your loops with this resolution. Therefore, what you want to do
is execute the SRTP instruction in a faster, higher priority periodic task typically running every 10 or
20 milliseconds. You can then use a controller scoped tag to send the data from the PIDE output to
the input of the SRTP.

For a typical loop then, your CycleTime might be 10 seconds, and if your SRTP instruction is running
in a 20 millisecond periodic task, then your output resolution is 0.2% which is plenty of resolution to
handle most of these types of loops. For heat/cool loops, you typically configure the SRTP instruction
such that 100% PIDE output provides full heating, 50% PIDE output provides no heating or cooling,
and 0% PIDE output provides full cooling. In fact, this is the default SRTP configuration. For a heat-
only loop, configure the SRTP such that 100% PIDE output provides full heating, and 0% PIDE output
provides no heating. Additionally, for a heat/cool loop, you will typically want to set the .CVInitValue
parameter of the PIDE instruction to 50. This will cause the PIDE loop to start up with an output of
50% when the controller first goes to run mode. A typical heat/cool loop setup of the SRTP instruction
is shown below.

Cycle Time = 10 seconds

SRTP SRTP

Heat Cool
PIDE SRTP % SRTP % Contact Contact
CVEU Heating Cooling On Time On Time

0% 0% 100% 0 sec 10 sec
25% 0% 50% 0 sec 5 sec
50% 0% 0% 0 sec 0 sec
75% 50% 0% 5 sec 0 sec

100% 100% 0% 10 sec 0 sec
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The FBD logic to execute a typical heat/cool loop would then look like this:

Execute the PIDE instructions
in a slow periodic task since

these are typically slow
temperature loops.
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Split Range Time Froportional
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u}
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u}
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oo
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If you are driving an analog final control element for heating and/or cooling instead of a digital contact,
you can directly use the HeatTimePercent and CoolTimePercent outputs of the SRTP instruction.
They will range from 0-100% depending on the amount of heating or cooling requested by the PIDE

instruction.

As mentioned earlier in this document, adaptive gains can easily be accomplished with the PIDE
instruction. Often, having different gains for the heating and cooling processes can lead to better
control since these are different physical processes. To accomplish adaptive gains, turn on visibility of
the PGain, IGain, and DGain parameters and wire in a selection of either a set of heating gains or
cooling gains as shown below.
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Turn on V|S|b|l|ty Of PGain, PIDE Properties - BarrelTemploop
IGa|n, and DGa|n p|ns Th|S General Configuration] EUS;’Limits] Cascadefﬂatio] Alan
allows the tuning constants to [Vis [Name [Value =
H B} [ |FGain 0.0/RE#
be programmatically changed. 15 lGa TR
||| # |DGain 0.0/RE#
11— PUFPranarticensl y
EIM
GRT_01 FIDE /
GRT Enhanced PID:
>reater Than (Ax H) oo oa
5 Barre p P CVEL 30—4
o Sounes Dest [— | SEL 01 P ain ProgDpelZlD
SoumeB SE_L O I=ain Auto 30
| O Dk ain hdanual @
| Select FAutotuneTag  BamelTempAtune
CoalP&ain " Int Ot s
0o
He atP'ain InZ
— Selectarln
Repeat this
1 H o . .
Test if CVEU is grea.ter thgn 5_0 %o. selection logic for
If so, select the heating gain; if each gain.

not, select the cooling gain.

Process Simulation

For simple simulation of process loops, you can use the process instructions built right into the Logix
controller. Most loops can generally be thought of as either “integrating” or “self-limiting.” An example
of an integrating process would be a level loop. If you consider a tank with a flow into the tank
matched exactly by the flow out of the tank, it will have a steady level. If you then make a step
increase in the flow into the tank, the tank will steadily fill up until it is full or overflows. This is typical
of an integrating process loop; if you make a step change to the loop output, the process will steadily
increase or decrease until it reaches a physical limit.
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Tank overflows!

Level

Time

An integrating loop such as a level loop is simple to simulate — just perform a mass or material
balance calculation on the tank.

An example of a self-limiting process loop would be a temperature loop. If you make a step increase
to the loop output, the temperature might typically take a little while to start responding, and would
then exponentially increase to a new steady-state value.

Temperature

Time

A self-limiting process loop can often be simulated by a deadtime and first order lag in series. The
deadtime simulates the delay between when the output changes and the PV starts responding, and
the lag simulates the exponential rise to a new steady-state value.
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Temperature

CV (steam flow)

____________________

Time
Real Process

Temperature

CV (steam flow)

____________________

------- PV

First-order lag
defines curve
Deadtime

Time
Simulated Process

The Logix controller provides Deadtime and Lead-Lag instructions which can be used for these types
of simulations. The output of the PIDE instruction is wired through the Deadtime and Lead-Lag and
then back into the PV input of the PIDE. The loop can then be tuned and operated with the model.
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By choosing different values of deadtime and lag, you can simulate different types of process loops.
For example, a slow temperature loop might have a deadtime of a few minutes and a lag time
constant of several minutes, while a fast flow loop might have a deadtime of a couple seconds and a
lag time constant of a few seconds.

You can also use the Gain parameter on the Deadtime or Lead-Lag instruction to simulate a process
gain. For example, if a 10% change in loop output would typically cause a 20% change in PV, you
could use a Gain of 2 to simulate this behavior. Similarly, if your loop has an ambient condition
whereby a loop output of 0% would cause the process to settle at some non-zero value, you can
enter this value as a Bias. For example, a temperature loop might settle at room temperature if the
loop output was 0%. Finally, you might sometimes also want to use a Scale (SCL) block to scale the
output of the PIDE instruction into a PV value with a different range.

Autotuning

The PIDE instruction has a built-in autotuner which you can use to obtain suggested tuning constants
for your process loop. Because the autotuner is built into the PIDE instruction, you can tune your
loops within RSLogix 5000 or from any operator interface. The PIDE autotuner is an open loop
autotuner, meaning that the loop must be in manual. The autotuner will step the output by an amount
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you configure, watch the response of the PV, and then give you sets of suggested proportional,
integral, and derivative gain values for a fast, medium, or slow response. As shown below, in addition
to the suggested tuning constants, the autotuner also returns the process model which was used to
estimate the tuning constants. By comparing this process model to the actual process, you can get an
idea of the appropriateness of the suggested gains.

PIDE Autotune - Flowl oop fE

Execution State:  Complete

Autotune Status |oE

Froportional Inkegral [1/min) Drerivative [m
(" SlowResponse | 058575314 | 5990657 | 7.48462370e003
¢ Medum Response | 11715063 | 1.5931314 | 0014369247 >
{" FastResponse | 17572594 | 1797197 | 0.022453863
| |

&+ Cument 0.0 0.0 | V
Tuning constants
——=| suggested by the autotuner
Time Conztant; B zec
Deadtime: 2.3 =ec
Gain: 1.060587 Process model used

EBased on Mon-integrating mode] by the autotuner
[ e

If more autotuning capability is desired, the PIDE instruction also supports the RSTune and
RSLoopOptimizer packages. These PC-based autotuners support closed loop tuning and also,
particularly in the case of RSLoopOptimizer, provide a wealth of diagnostic information regarding your
process loops.

Summary

For more reference information on the Enhanced PID instruction and the rest of the process control
instruction set, you can refer to the Logix5000 Controllers Process Control and Drives Instructions
Reference Manual, publication 1756-RM006. This manual gives a detailed description of the
operation of each of the built-in process instructions.
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The Enhanced PID instruction goes beyond the traditional realm of PLC-based loop control by
providing a host of advanced features, allowing you to easily set up more advanced loop algorithms
without the onerous ladder programming required by traditional systems in the past. However, the
PIDE instruction is only one piece of a Logix-based process solution. Other features such as the
entire process control instruction set, full-featured Function Block Diagramming, Sequential Function
Chart, and Structured Text editors, ControlLogix redundancy, a huge selection of I/O options,
including HART and FOUNDATION Fieldbus, and integration with our RSView operator interface
solutions, allow the Logix controllers to provide a solution as adept at performing process control as
they are at sequential, motion, or drives control. This provides the opportunity to drastically decrease
your engineering and maintenance costs by leveraging a common, scaleable platform across your
entire facility. Whether you are controlling continuous or batch process applications, high-speed
packaging machines, or coordinated drive systems, Logix now has the capabilities to handle all these
applications.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, W1 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication Logix-WP008B-EN-P — February 2016 Copyright ©2016 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.



