
 

Perform Common Process 
Loop Control Algorithms 
 
Using the PIDE Instruction  
 
 
 

Introduction 
This white paper discusses how to use the features inherent in the Enhanced PIDE instruction in the 
RSLogix 5000 Function Block Diagram (FBD) editor to perform common process loop control 
algorithms such as: 

 

• adaptive gains 

• cascade control 

• ratio control 

• multiloop selection 

• split-range time-proportioning 

 

Although this paper focuses on the PIDE instruction, be aware that the FBD editor supports many 
other process control instructions. Other instructions provide capabilities such as flow totalization, 
ramp/soak temperature profiles, motor operated valve control, and two- or three-state device control 
for devices such as pumps and solenoid valves. These instructions provide you with the building 
blocks you need to perform typical process control applications. 
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Velocity vs. Positional Control 
The PIDE instruction uses a velocity form algorithm of the PID equation. Essentially, this means that 
the loop works on change in error to change the output. Traditional PID algorithms used in PLCs have 
used positional form algorithms. A positional form algorithm works on error directly. Although this is 
acceptable for simple applications, the velocity form algorithm is much easier to apply for more 
advanced applications such as adaptive gains or multiloop selection. For this reason, most 
Distributed Control Systems (DCS) have traditionally used a velocity form algorithm. Likewise, the 
Logix controller family also takes advantage of the more advanced properties of a velocity form 
algorithm. 

 

Understand that both a positional form and a velocity form PID algorithm perform identically in 
response to a change in error. In fact, you can easily derive one form of the equation from the other. 
The equations for the two types of algorithms are shown below: 

 

Positional Form PID Algorithm 

 

 

Velocity Form PID Algorithm 

 

 

where: 

CV = Controlled Variable 

E = Error 

∆t = Update time 

Kp = Proportional gain 

KI = Integral gain 

KD = Derivative gain 

 

The two main differences between the forms of the PID algorithm are that: 

 the proportional term works on change in error (∆E) in the velocity form and on error (E) in 
the positional form  

 the accumulation of the integral term is contained in the previous output (CVn-1) in the velocity 
form and in the summation of the integral term in the positional form. The following sections 
explain why this is important. 

The PIDE instruction also supports two different forms of the velocity form algorithm – independent 
and dependent gains. These are described below: 
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Independent Gains Form 

In this form of the algorithm, each term of the algorithm, proportional, integral, and derivative, has a 
separate gain. Changing one gain affects only that term and not any of the others. 

 

where: 

CV = Control variable 

E = Error in percent of span 

t = Update time in seconds used by the loop 

KP = Proportional gain 

KI = Integral gain in min-1. Note that a larger value of KI causes a faster integral response. 

KD = Derivative gain in minutes 

 

Dependent Gains Form 

In this form of the algorithm, the Proportional gain is effectively changed into a Controller gain. By 
changing the Controller gain, you change the action of all three terms, proportional, integral, and 
derivative, at the same time. 

where: 

CV = Control variable 

E = Error in percent of span 

t = Update time in seconds used by the loop 

KC = Controller gain 

TI = Integral time constant in minutes per repeat. In other words, it will take TI minutes for the integral 
term to repeat the action of the proportional term in response to a step change in error. Note that a 
larger value of TI causes a slower integral response. 

TD = Derivative time constant in minutes 

 

When you use the PIDE instruction with the parameter DependIndepend cleared, the parameters 
PGain, IGain, and DGain are used to represent KP, KI, and KD. When DependIndepend is set, you 
use the parameters PGain, IGain, and DGain to represent KC, TI, and TD. 
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The PIDE equations above are representative of the algorithms used by the PIDE instruction. You 
can substitute the change in error values by the change in PV (in percent of span) for the proportional 
and derivative terms by manipulating the parameters PVEProportional and PVEDerivative. By default, 
the PIDE instruction actually uses the change in error for the proportional term and the change in PV 
for the derivative term. This eliminates large derivative spikes on changes in setpoint. 

 

You can convert the gains used between the independent and dependent gains PIDE algorithm forms 
by using the following equations: 

 CP KK   

 

  

 
 DCD TKK   

 

Either algorithm type – independent or dependent – can give you identical control with the appropriate 
gains. It really just depends on with which style of PID algorithm you have the most familiarity. Some 
people prefer the independent gains style since they can manipulate individual gains without affecting 
the other terms. Others prefer the dependent gains style since they can, at least to a certain extent, 
change only the controller gain and cause an overall change in the aggressiveness of the PID loop 
without changing each gain separately. 

 
Adaptive Gains 
One of the big advantages of a velocity form algorithm is the implementation of adaptive gains. 
Implementing adaptive gains simply means that you change the proportional, integral, and derivative 
gain values in a running loop. This is often desirable since a process may have very different 
operating characteristics depending on the actual operating environment. For example, the barrel 
temperature control of an extrusion machine often involves heating the barrel with resistive heaters 
and cooling the barrel by running coolant through lines around the barrel. The heating and cooling of 
the barrel are two different physical processes and often require different gain values in order to 
obtain the best control. Typically this is accomplished by defining 50% loop output as providing no 
heating or cooling. An output greater than 50% applies increasing heating, and an output less than 50 
% applies increasing cooling. 

With a positional form algorithm, swapping in new gains as the loop changes from heating to cooling 
is very difficult. Since the proportional term on a positional form algorithm works directly on error, any 
error at the point at which the gains change causes a bump in output proportional to the difference 
between the heating and cooling proportional gains. For example, assume that the heating 
proportional gain is 3 and the cooling proportional gain is 1. Now, if the loop output moves from 
cooling to heating (i.e., crosses 50%), and, when it does so, the error is at 5%, the loop experiences a 
10% bump in output when you switch it to the heating gains. This is because the positional form PID 
algorithm works on error directly. It is very difficult to get good control when the output is bumped just 
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because of new gains. To handle this correctly, you really need to put the loop in manual, put in the 
new gains, execute the loop in manual once to allow it to back-calculate for a bumpless transfer, and 
then finally put the loop back into automatic to start using the new gains. This is difficult and time-
consuming to program correctly.  

Now do the same thing with a velocity form algorithm. Changing the proportional gain from 1 to 3 with 
a 5% error causes no change in the output since the error was 5% just before the new gain was used 
and remained 5% just after the new gain was used. Since the error didn’t change, no proportional 
term change is made to the output. You now see why implementing adaptive gains control schemes 
is much easier with the velocity form PIDE algorithm used in Logix. You can simply swap in new gain 
values on-the-fly without worrying about bumping your process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiloop Selection 
There are times when two or more process variables are controlled by the same control variable. 
Often, the actual control variable sent to the field actuator needs to be limited in these cases to use 
either the lesser or greater of the outputs of two or more PID loops (one for each different process 
variable). For example, to control both the temperature and pressure in an exothermic chemical 
reaction, you might have a PID loop for temperature, another PID loop for pressure, and use the 
lesser of the outputs of these two loops to control a flow of catalyst into the reactor to modulate the 
reaction rate. In other words, if the pressure is too high, the pressure PID loop calls for less catalyst, 
and if instead the temperature is too high, the temperature loop calls for less catalyst. In either case, 
you always want to use the lesser of the two loops to control the catalyst flow. The challenge is to 
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align the loop which is not in control with the loop that is, and to allow control to bumplessly switch 
between the loops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A positional form PID algorithm is very difficult to implement correctly for this type of control scheme. 
Since you constantly need to align the loops, you must take the output of the loop which is in control, 
provide it as a manual output signal to the other loop, put that loop in manual to back calculate and 
align with the loop which is in control, and then put the out-of-control loop back into auto. You must do 
this for every execution of the loops. 

 

A velocity form PID algorithm provides a clear advantage for these types of control schemes. Since 
the previous output of the loop is available in the CVn-1 term, it is a simple matter of wiring the output 
actually sent to the final control element into the CVn-1 term of each loop. The two loops will therefore 
always be aligned with each other and control can bumplessly move between temperature or 
pressure limited control. An example of this logic is shown below: 

Catalyst TT PT
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As shown, the value actually sent to the catalyst valve is simply wired back into the CVPrevious 
parameter on each PIDE instruction. You should also set the CVSetPrevious parameter to tell the 
PIDE instruction to use the CVPrevious parameter as the CVn-1 term in the PID algorithm. This logic is 
much simpler to create and maintain than the equivalent logic required for a positional form PID 
algorithm. 

 

Mode Control Options 
The PIDE instruction provides additional capabilities through the use of many different modes of 
control. In addition to the traditional modes such as auto and manual, the PIDE instruction also 
supports the concept of Program/Operator control to define who is allowed to make changes to the 
loop. If the loop is in Program control, the user program can place the loop into the appropriate mode 
(e.g., Auto/Manual), and change the setpoint or manual output of the loop. Conversely, if the loop is in 
Operator control, the operator can change modes and values. The supported control types and loop 
modes are: 

 

Mode Usage 

Program Control When in Program control, the loop mode is determined by the user program. 
The user program can also change the setpoint and manual output of the loop. 

Operator Control When in Operator control, the loop mode is determined by the operator. The 
operator can also change the setpoint and manual output of the loop. 
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Cascade/Ratio Mode When in Cascade/Ratio mode, the loop will automatically regulate its output as 
in Auto mode, but the setpoint will come from an external source, as connected 
to the SPCascade input parameter. If the UseRatio parameter is set, the 
SPCascade input will also be multiplied by a ratio value before it is used as the 
setpoint. 

Auto Mode When in Auto mode, the loop will automatically regulate its output to maintain 
the PV at the setpoint. 

Manual Mode When in Manual mode, the loop will set its output equal to the CV value entered 
by the user program (when in Program control) or by the operator (when in 
Operator control) 

Override Mode When in Override mode, the loop will set its output equal to the CV value 
configured in the CVOverride parameter. Override mode is typically used for 
interlock conditions. 

Hand Mode When in Hand mode, the CV value is set equal to the HandFB parameter. The 
HandFB is intended to come from a hard hand/auto station. When the loop is 
placed into Hand mode (by setting the ProgHandReq parameter), it indicates 
that the hand/auto station has bypassed the control system and is controlling 
the final control element directly. By setting the CV equal to the HandFB value 
(the output of the hand/auto station), the loop can bumplessly return to Auto or 
Manual mode once out of Hand mode. 

 

 

Mode changes are initiated by setting the appropriate mode request parameters of the PIDE 
instruction. These mode request parameters are prefixed by either “Prog” to indicate it is a 
programmatic request or by “Oper” to indicate it is an operator generated request. For example, 
OperAutoReq is a request from the operator to enter Auto mode.  

 

The Program/Operator control states can be used to lock the PIDE instruction into the appropriate 
control state when needed. For example, an automated startup sequence might be used in an 
application where the user program needs to lock the PIDE instruction into Program control to ensure 
that the operator does not interfere with the startup. This can be done by setting the ProgProgReq 
parameter (programmatic request to go to the Program control state).  
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The control states and modes also have precedences. If both Program and Operator control are 
requested, the loop will go to Operator control. The precedence for modes are (lowest to highest): 
Cascade/Ratio, Auto, Manual, Override, and Hand. 

 

Finally, the Operator requests are designed to simplify working with operator interfaces. Any time an 
“Oper…” request is set, the PIDE instruction evaluates whether it can respond to the request, and 
then always resets the request. This eliminates the need for special programming in the HMI to reset 
mode requests. 

Timing Modes 
Regulatory control instructions require a known update time (the ∆t in the PIDE equation, for 
example) in order to execute correctly. In Logix, instructions such as Enhanced PID, Totalizer, and 
Lead-Lag support three different timing modes to obtain this update time: Periodic, Oversample, and 
Real Time Sampling. These modes are described below: 

 

Mode Description 

Periodic The default timing mode. To use this mode, simply place the instruction in a routine running in a 
periodic task. The instruction will automatically use the periodic task update rate as the update 
time. This mode is the easiest to implement and can be used for most applications. 

Oversample This timing mode provides complete manual control over how the instruction executes. To use 
this mode, configure the update rate in OversampleDT. You must then set EnableIn every 
OversampleDT seconds. 

• When “ProgramLock” is 
true, the loop is locked 
into Program control 
since ProgProgReq is 
true. 

ProgOper indicates 
the current control 
state of the loop. 

• Loop is locked into 
Operator control 
since ProgOperReq is 
true. 
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Real Time 
Sampling 

This timing mode works with analog input modules to execute the instruction algorithm whenever 
a new analog input sample is received. To use this mode, wire the RollingTimeStamp parameter 
from the analog input module into the RTSTimeStamp parameter on the instruction, and wire the 
RealTimeSample parameter from the analog input module into the RTSTime parameter on the 
instruction. This mode is useful if you want the most accurate execution on instructions such as 
Totalizer where small errors could accumulate over time. 

 

An example of using Periodic mode is shown in the figure below. Periodic mode can be used for the 
vast majority of your loops. Just make sure that the PV is sampled faster than the periodic task 
update rate. 

 

 

For an example of where you might use Oversampling mode, consider an eddy current furnace where 
every 28 seconds, a new steel ingot is dropped on a conveyor and pushed forward into the furnace. 
An infrared camera takes a temperature reading on the ingot which is pushed out the end of the 
furnace. The infrared camera provides the PV (temperature) for this loop through a serial interface to 
the controller. In this case, a new PV is obtained about every 28 seconds, but due to the 
asynchronous nature of the serial port communications, there is no good way to synchronize this with 
a periodic task. You could use Oversampling mode to drive execution of the PIDE instruction every 
time a new temperature signal was received as shown below.  

 

Since the timing mode is Periodic 
(TimingMode=0), DeltaT is automatically 
set to the task update time of 0.1 seconds. 

Periodic mode is intended to be 
used by placing the block into a 
periodic task. 
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Select Oversampling mode 
(TimingMode=1). 

Turn on visibility for 
OversampleDT pin and wire 
to setting for the “new ingot 
rate.”  (Optionally, you could 
just enter a constant value.) 

Turn on visibility for EnableIn pin 
and wire to the boolean signal 
indicating “new temperature 
received” from IR camera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For an example of using Real Time Sampling mode, consider the case of a flow totalizer. In this case, 
a volumetric flow signal is totaled over time using a Totalizer instruction. Because the Totalizer 
continually adds the most recent flow sample to the running total, any small inaccuracies can build up 
over time. To obtain the most accurate time based samples from the analog input module, you could 
use Real Time Sampling mode as shown below. (Note that the Totalizer instruction internally uses 
double precision floating point and trapezoidal rule numerical integration to minimize any calculation 
errors.) 
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PV and CV Fault Handling 
When a process variable or control variable has bad health, you don’t want the PID loop continuing to 
try to control since it no longer has either a feedback or an actual control capability. The PIDE 
instruction can handle this automatically if you use 1756 I/O modules. The 1756 I/O modules all have 
channel fault indications for each channel. The channel fault will turn on if communications are lost 
with the I/O module or if faults such as underrange or overrange occur on the channel. The channel 
fault, therefore, is an easy single parameter to monitor the quality of the I/O channel. By wiring these 
channel fault indicators into the PVFault and CVFault parameters, the PIDE instruction will 
automatically lock itself into Manual mode any time the PV or CV has bad health. 

 

 

 

 

 

 

 

 

Configure the analog 
input module for your 
desired RTS rate. 

Turn on visibility of RTSTime 
and RTSTimeStamp. 

Wire the RealTimeSample value from 
the analog input module configuration 
to the RTSTime parameter. 

Wire the RollingTimeStamp input from the 
analog input module to the RTSTimeStamp 
parameter. The totalization algorithm will 
now execute every time it sees the time 
stamp change. 
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Ratio Control 
Ratio control is useful when you are trying to maintain a constant ratio of flow of one material in 
relationship to another. For example, assume that a continuous mixing tank receives an ingredient 
flow (Flow A) from an upstream source. The quantity of Flow A may vary depending on upstream 
processing conditions. For this reason, Flow A is often referred to as the “wild” or “uncontrolled” flow. 
Regardless of the amount of Flow A into the mixer, you always want to add a constant percentage, or 
ratio, of another ingredient (Flow B). Flow B is controlled by a PIDE instruction using Cascade/Ratio 
mode, where the setpoint to the PIDE instruction is determined by multiplying the Flow A signal by a 
ratio value. 

 

To enable Cascade/Ratio mode, you must first set parameter AllowCasRat. This parameter is 
available since most loops do not need Cascade/Ratio mode, so it is disabled by default. You must 
also set the UseRatio parameter. This tells the PIDE instruction to multiply the SPCascade input by 
the Ratio value and use the result as the setpoint when in Cascade/Ratio mode. You then wire the 
controlled flow into the PV input and the uncontrolled flow into the SPCascade input. You can also 
define ratio high and low limit values to limit the ratio to valid values. An example of this 
implementation is shown below. 

 

 

To automatically handle PV or CV faults, first turn on 
visibility of the PVFault and CVFault pins. 

Then just wire the analog 
input and analog output 
channel fault bits to the 
PVFault and CVFault pins. 

Channel fault indicators go true 
if the channel fails (goes 
underrange or overrange, etc.) 
or if communications with the 
module fails. 

When PVFault or 
CVFault is true, the 
loop locks into Manual 
mode. This prevents 
the CV from winding 
up out of control. 
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Flow B 

FT FT

Flow A
Controlled 
flow controlled 
by PIDE 
instruction 

Uncontrolled 
flow from 
upstream 
process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Wire the uncontrolled flow into the 
SPCascade parameter. 

Use the controlled flow as the PV.

Set UseRatio to tell the loop 
to multiply SPCascade by 
the Ratio value. 

Ratio values can 
come from an 
operator display 
or the program. 

Ratio limits can be 
used to bound the 
acceptable ratio 
values. 

Set AllowCasRat to 
allow Cascade/Ratio 
mode. 
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Cascade Control 
Cascade control is useful when you want to limit fluctuations in your final control element from 
causing upsets to your process. As an example, consider the case of a mixing tank whose 
temperature is controlled by the flow of steam into a heating jacket around the tank. If the steam 
pressure were to drop as the result of some upstream activity, the temperature of the product in the 
tank would start to decrease. The PID loop controlling the temperature would sense the temperature 
drop and eventually open the steam valve enough to bring the temperature back to setpoint. 
However, it would be advantageous to start opening up the steam valve before the product 
temperature was seriously affected. Cascade control provides this capability. 

 

In cascade control, the loop controlling the main variable is referred to as the primary loop. This is 
also sometimes referred to as the master loop or outer loop. In our example, the tank temperature is 
controlled by the primary loop. The loop controlling fluctuations in the final control element is referred 
to as the secondary loop. The terms ‘slave loop’ or ‘inner loop’ are also used. In our example, you 
could set up a secondary loop to monitor the jacket temperature. Since the volume of the jacket is 
much smaller than the volume of the tank, it will respond much more quickly to changes in steam 
pressure. This illustrates one of the limitations of cascade control. The process response 
characteristics of the secondary loop must be quicker than the process response characteristics of 
the primary loop. This is logical since if the secondary loop was slower, it would not be able to control 
disturbances before they were seen by the primary. 

 

With a secondary loop monitoring the jacket temperature, a drop in steam pressure will now be 
quickly seen as a drop in the jacket temperature, and the secondary loop will start opening the steam 
valve before the tank temperature is seriously affected. This is illustrated in the diagram below. 
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The PIDE instruction has built-in capabilities to handle cascaded loops. First, it has a distinct mode 
(Cascade/Ratio) to handle cascade control. The secondary loop can either be in Cascade mode, in 
which case the output of the primary will provide the setpoint of the secondary, or it can be in Auto 
mode, in which case you can enter a temperature setpoint for the jacket directly. 

 

The PIDE instruction also supports initialization of the primary loop to the secondary loop’s setpoint. If 
the secondary loop leaves Cascade mode, the primary loop needs to stop trying to control since it no 
longer is affecting the process. It should also set its output equal to the secondary loop’s setpoint, so 
when the secondary is returned to Cascade mode, the primary will bumplessly start controlling. 

 

Additionally, the PIDE instruction supports windup limiting on the primary loop. When the secondary 
loop reaches an output or setpoint limit, you want the primary loop to stop integrating in the direction 
of the limit. For example, if the secondary reached a high output limit, the primary should no longer 

• With cascade control, a drop in steam pressure 
causes the jacket temp to drop. The secondary 
(inner) PID loop then responds to increased steam 
flow and gets the jacket temp back to setpoint 
before the product temp is seriously affected. 
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integrate in a positive direction. In our example, if the secondary loop had opened the steam valve 
100%, it would make no sense for the primary to continue to ask for more steam (increase the 
secondary’s setpoint) since the secondary cannot give any more steam. 

A typical setup of a cascaded loop in RSLogix 5000 is illustrated below. First on the primary loop, you 
need to turn on visibility of the CVInitReq and CVInitValue pins. These will be used to setup the 
initialization of the primary loop when the secondary leaves Cascade mode. You should also make 
sure that the engineering units range of the primary’s output matches the engineering units range of 
the secondary’s setpoint since the secondary will use the primary’s output as its setpoint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the secondary loop, you need to turn on visibility of the InitPrimary, WindupHOut, and 
WindupLOut pins. These will be used to setup initialization and windup limiting on the primary. You 
also need to set AllowCasRat to enable the Cascade/Ratio mode just as we did for a ratio control 
loop. 

Turn on visibility of CVInitReq 
and CVInitValue pins. 

Make sure CVEUMax and CVEUMin 
match the engineering unit range of the 
secondary loop’s SP. 



18 | Perform Common Process Loop Control Algorithms 
 

 

 
 

 

Finally, you should wire the InitPrimary and SP outputs of the secondary to the CVInitReq and 
CVInitValue inputs on the primary. When the secondary leaves Cascade mode, it will set the 
InitPrimary output, causing the primary loop to initialize its CVEU output to be equal to the 
secondary’s setpoint. You should also wire the WindupHOut and WindupLOut outputs of the 
secondary to the WindupHIn and WindupLIn inputs on the primary. When the secondary hits an 
output or setpoint limit, it will set the appropriate Windup output which will cause the primary loop to 
stop integrating in that direction. 

 

 

 

 

 

 

 

 

Set AllowCasRat true to 
enable Cascade/Ratio mode. 

Turn on visibility of 
InitPrimary, 
WindupHOut, and 
WindupLOut pins. 



19 | Perform Common Process Loop Control Algorithms 
 

 

 
 
 

One final note -- some DCS systems accomplish the primary initialization and windup limiting by 
wiring a single “back-calculate” wire from the secondary to the primary. This wire contains all of the 
initialization and windup H/L signals. However, the advantage of breaking these out as separate 
signals is that it allows additional flexibility for handling more advanced situations where, for example, 
a single primary loop might fan out to multiple secondaries. 

 

Split-range Time-Proportioned Loops 
In certain situations, a single PIDE instruction might be used to perform two types of control 
depending on the output range. If we return to the example of an extrusion machine barrel zone, the 
temperature is controlled by pulsing resistive heaters when the PIDE output is above 50% and 
pulsing coolant through cooling coils when the PIDE output is below 50%. The Logix controllers 
support a Split-Range Time-Proportioning (SRTP) instruction for precisely these types of loops. 

 

You also need to consider how you execute the PIDE and SRTP instructions. These types of 
temperature loops are usually very slow acting, so the PIDE instruction often needs to execute only 
every one-half to two seconds. It is important, however, that the SRTP instruction is executed much 
more quickly than the PIDE instruction. Since the SRTP is actually performing the pulsing of the 
heating and cooling outputs, your output resolution is a function of the CycleTime of the SRTP and 
how often the SRTP executes. 

Wire InitPrimary to 
CVInitReq to 
initialize the primary 
whenever the 
secondary leaves 
CasRat mode. 

Wire SP to CVInitValue to initialize the primary’s CVEU to the 
secondary’s SP value whenever CVInitReq is true. This allows 
the primary to bumplessly line up with the secondary. 

Wire WindupHOut and WindupLOut to 
WindupHIn and WindupLIn. This stops the 
primary from integrating up or down if the 
secondary hits an output or setpoint limit. 
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For example, if you defined a CycleTime for the SRTP of 10 seconds, and then executed the SRTP in 
the same periodic task as the PIDE at once a second, your output resolution would actually only be 
10%! It would be impossible to control your loops with this resolution. Therefore, what you want to do 
is execute the SRTP instruction in a faster, higher priority periodic task typically running every 10 or 
20 milliseconds. You can then use a controller scoped tag to send the data from the PIDE output to 
the input of the SRTP. 

 

For a typical loop then, your CycleTime might be 10 seconds, and if your SRTP instruction is running 
in a 20 millisecond periodic task, then your output resolution is 0.2% which is plenty of resolution to 
handle most of these types of loops. For heat/cool loops, you typically configure the SRTP instruction 
such that 100% PIDE output provides full heating, 50% PIDE output provides no heating or cooling, 
and 0% PIDE output provides full cooling. In fact, this is the default SRTP configuration. For a heat-
only loop, configure the SRTP such that 100% PIDE output provides full heating, and 0% PIDE output 
provides no heating. Additionally, for a heat/cool loop, you will typically want to set the .CVInitValue 
parameter of the PIDE instruction to 50. This will cause the PIDE loop to start up with an output of 
50% when the controller first goes to run mode. A typical heat/cool loop setup of the SRTP instruction 
is shown below. 

 
 
 

 

 

 

 

 

 

Cycle Time = 10 seconds

PIDE 
CVEU 

SRTP % 
Heating 

SRTP % 
Cooling 

SRTP 
Heat 

Contact 
On Time 

SRTP 
Cool 

Contact 
On Time

0% 0% 100% 0 sec 10 sec
25% 0% 50% 0 sec 5 sec 
50% 0% 0% 0 sec 0 sec 
75% 50% 0% 5 sec 0 sec 
100% 100% 0% 10 sec 0 sec 
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The FBD logic to execute a typical heat/cool loop would then look like this: 

 

 
 

If you are driving an analog final control element for heating and/or cooling instead of a digital contact, 
you can directly use the HeatTimePercent and CoolTimePercent outputs of the SRTP instruction. 
They will range from 0-100% depending on the amount of heating or cooling requested by the PIDE 
instruction. 

As mentioned earlier in this document, adaptive gains can easily be accomplished with the PIDE 
instruction. Often, having different gains for the heating and cooling processes can lead to better 
control since these are different physical processes. To accomplish adaptive gains, turn on visibility of 
the PGain, IGain, and DGain parameters and wire in a selection of either a set of heating gains or 
cooling gains as shown below. 

 

 

 

 

 

 

 

 

 

Execute the PIDE instructions 
in a slow periodic task since 
these are typically slow 
temperature loops. 

Execute the SRTP 
instructions in a faster, 
higher priority task. This 
allows the pulsed outputs to 
be more accurate. 

Use a controller 
scoped tag to send 
the PIDE CVEU to 
the input of the SRTP 
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Process Simulation 
For simple simulation of process loops, you can use the process instructions built right into the Logix 
controller. Most loops can generally be thought of as either “integrating” or “self-limiting.” An example 
of an integrating process would be a level loop. If you consider a tank with a flow into the tank 
matched exactly by the flow out of the tank, it will have a steady level. If you then make a step 
increase in the flow into the tank, the tank will steadily fill up until it is full or overflows. This is typical 
of an integrating process loop; if you make a step change to the loop output, the process will steadily 
increase or decrease until it reaches a physical limit. 

 

 

Turn on visibility of PGain, 
IGain, and DGain pins. This 
allows the tuning constants to 
be programmatically changed. 

Test if CVEU is greater than 50%. 
If so, select the heating gain; if 
not, select the cooling gain. 

Repeat this 
selection logic for 
each gain. 
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An integrating loop such as a level loop is simple to simulate – just perform a mass or material 
balance calculation on the tank. 

An example of a self-limiting process loop would be a temperature loop. If you make a step increase 
to the loop output, the temperature might typically take a little while to start responding, and would 
then exponentially increase to a new steady-state value. 

 

 
 

A self-limiting process loop can often be simulated by a deadtime and first order lag in series. The 
deadtime simulates the delay between when the output changes and the PV starts responding, and 
the lag simulates the exponential rise to a new steady-state value. 
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The Logix controller provides Deadtime and Lead-Lag instructions which can be used for these types 
of simulations. The output of the PIDE instruction is wired through the Deadtime and Lead-Lag and 
then back into the PV input of the PIDE. The loop can then be tuned and operated with the model. 
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By choosing different values of deadtime and lag, you can simulate different types of process loops. 
For example, a slow temperature loop might have a deadtime of a few minutes and a lag time 
constant of several minutes, while a fast flow loop might have a deadtime of a couple seconds and a 
lag time constant of a few seconds. 

 

You can also use the Gain parameter on the Deadtime or Lead-Lag instruction to simulate a process 
gain.  For example, if a 10% change in loop output would typically cause a 20% change in PV, you 
could use a Gain of 2 to simulate this behavior.  Similarly, if your loop has an ambient condition 
whereby a loop output of 0% would cause the process to settle at some non-zero value, you can 
enter this value as a Bias.  For example, a temperature loop might settle at room temperature if the 
loop output was 0%.  Finally, you might sometimes also want to use a Scale (SCL) block to scale the 
output of the PIDE instruction into a PV value with a different range. 

 

Autotuning 
The PIDE instruction has a built-in autotuner which you can use to obtain suggested tuning constants 
for your process loop. Because the autotuner is built into the PIDE instruction, you can tune your 
loops within RSLogix 5000 or from any operator interface. The PIDE autotuner is an open loop 
autotuner, meaning that the loop must be in manual. The autotuner will step the output by an amount 

Wiring the CVEU of the PIDE 
block through a Deadtime 
and Lead-Lag block 
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you configure, watch the response of the PV, and then give you sets of suggested proportional, 
integral, and derivative gain values for a fast, medium, or slow response. As shown below, in addition 
to the suggested tuning constants, the autotuner also returns the process model which was used to 
estimate the tuning constants. By comparing this process model to the actual process, you can get an 
idea of the appropriateness of the suggested gains. 

 

 
 

If more autotuning capability is desired, the PIDE instruction also supports the RSTune and 
RSLoopOptimizer packages. These PC-based autotuners support closed loop tuning and also, 
particularly in the case of RSLoopOptimizer, provide a wealth of diagnostic information regarding your 
process loops. 

 

Summary 
For more reference information on the Enhanced PID instruction and the rest of the process control 
instruction set, you can refer to the Logix5000 Controllers Process Control and Drives Instructions 
Reference Manual, publication 1756-RM006. This manual gives a detailed description of the 
operation of each of the built-in process instructions. 

 
 

Process model used 
by the autotuner 

Tuning constants 
suggested by the autotuner 
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The Enhanced PID instruction goes beyond the traditional realm of PLC-based loop control by 
providing a host of advanced features, allowing you to easily set up more advanced loop algorithms 
without the onerous ladder programming required by traditional systems in the past. However, the 
PIDE instruction is only one piece of a Logix-based process solution. Other features such as the 
entire process control instruction set, full-featured Function Block Diagramming, Sequential Function 
Chart, and Structured Text editors, ControlLogix redundancy, a huge selection of I/O options, 
including HART and FOUNDATION Fieldbus, and integration with our RSView operator interface 
solutions, allow the Logix controllers to provide a solution as adept at performing process control as 
they are at sequential, motion, or drives control. This provides the opportunity to drastically decrease 
your engineering and maintenance costs by leveraging a common, scaleable platform across your 
entire facility. Whether you are controlling continuous or batch process applications, high-speed 
packaging machines, or coordinated drive systems, Logix now has the capabilities to handle all these 
applications. 
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